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Abstract—We present a fast and memory efficient algorithm for generating Compact Precomputed Voxelized Shadows. By performing

much of the common sub-tree merging before identical nodes are ever created, we improve construction times by several orders of

magnitude for large data structures, and require much less working memory. To further improve performance, we suggest two new

algorithms with which the remaining common sub-trees can be merged. We also propose a new set of rules for resolving undefined

regions, which significantly reduces the final memory footprint of the already heavily compressed data structure. Additionally, we

examine the feasibility of using CPVS for many local lights and present two improvements to the original algorithm that allow us to

handle hundreds of lights with high-quality, filtered shadows at real-time frame rates.

Index Terms—Shadow, voxel, directed acyclic graph, real-time
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1 INTRODUCTION

THE current de-facto standard algorithm for rendering
shadows from distant light sources (e.g., the sun) in

large open scenes is the Cascaded Shadow Maps (CSM) [1], [2]
approach. The idea is to split the current camera-view frus-
tum into several regions, or cascades, and to render a tradi-
tional shadow map [3] for each. Rendering, and performing
look-ups in, a shadow map is extremely fast on current
graphics hardware, and the CSM approach helps signifi-
cantly in reducing under-sampling artifacts that occur
when a shadow map is sampled at a frequency that is lower
than the screen-sampling frequency. On the other hand, the
algorithm will, by design, sample the shadow-casting geom-
etry in distant regions very sparsely, which also leads to
geometric aliasing artifacts.

Recently, a different approach, called Compact Precom-
puted Voxelized Shadows (CPVS), has been suggested [4].
Here, a shadow map is rendered at a resolution that is high
enough to avoid geometric aliasing. This shadow map is
then converted into a Directed Acyclic Graph (DAG) that con-
tains the voxelized, binary shadow information for any
point in the scene. The compact DAG is generated by merg-
ing common sub-trees of an intermediate Sparse Voxel Octree
(SVO) representation. The DAG representation can be two
orders of magnitude smaller than the corresponding
shadow map at high resolutions. When the scene can be
described entirely by closed geometry, compression rates
increase to three orders of magnitude. The method can only
be used to cast shadows from static geometry, as the com-
pression is done in a pre-compute pass, but dynamic geom-
etry can receive shadows, and high-quality filtered look-ups
are evaluated at a cost that is much lower than what would

be required to render and evaluate a CSM. Shadows from
dynamic geometry can then easily be supported using, for
instance, CSM, at an overall much lower cost than using
CSM for the full scene.

However, usability of the method is highly limited by the
time taken to generate the CPVS. We present a number of
elegant, non-intuitive, modifications to the algorithm to
improve its performance. We show that much of the com-
mon sub-tree merging can be performed during node-
insertion, before identical nodes are even created. For scenes
consisting of closed geometry, where large regions inside
objects need no shadow classification and can be considered
undefined, we will show (in Section 6) that this results in a
performance increase of approximately 150� for the actual
DAG construction and a performance increase of approxi-
mately 15� for the full construction. We show that for such
scenes, the DAG obtained from our improved node-inser-
tion algorithm is already orders of magnitude smaller than
the corresponding shadow map and can be used without
further compression if fast build times are a priority. Addi-
tionally, we show that if a slight increase in final DAG size
is acceptable, or if the scene geometry contains no self-inter-
sections, the rigorous identification of undefined regions
suggested in the paper by Sintorn et al. [4] can be replaced
by a much simpler algorithm that can be an order of magni-
tude faster at lower resolutions.

Otherwise, the DAG can be further compressed and we
suggest two novel algorithms for improving the perfor-
mance of this step. For scenes with no closed geometry, our
new algorithms improve performance by approximately a
factor 2.5�. Besides making CPVS an even more attractive
alternative to shadow maps or light maps, these perfor-
mance improvements open up for the possibility of creating
the data structure during level load, or even distributing the
generation over a large number of frames for a slowly mov-
ing dynamic light (e.g., the sun).

Another contribution is a new set of rules for deciding on
how to resolve undefined regions. Our new method will set
undefined voxels to lit or shadowed in such a way that the
number of unique nodes are kept locally minimal. This
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results in an up to 3� reduction in size of the final data
structures for the tested scenes.

Additionally, we have explored how the algorithm per-
forms for small, local lights. Such lights will not require
extreme resolutions, but we will show that the CPVS can
still offer data structures that are one to two orders of mag-
nitude smaller than the corresponding shadow map at reso-
lutions of e.g., 8;1923, making them an affordable
alternative to shadow maps also in scenarios where we
have many bounded lights (see Fig. 1). In Section 5, we will
show that with two small but important improvements to
the algorithm, they can be combined with a simple light-
culling technique to provide shadows from hundreds of
lights with high-quality filtering at real-time framerates.

2 PREVIOUS WORK

Rendering shadows in real time has been a hot research topic
for nearly four decades, and a complete overview is out of
scope for this article. Instead, we refer the reader to the book
by Eisemann et al. [5]. In this section, we will briefly over-
view recent work that is closely related to our topic.

Precomputed and compressed shadows. Evaluating visibility
between a view sample (of a pixel) and, e.g., a light-source is
often among the most time-consuming parts of generating an
image in real time, and it is common practice to pre-compute
as much of this work as possible (see the survey by Rama-
moorthi [6]). Specifically, if the light and shadow-casting
geometry can be considered static, the shadow information
can be precomputed and stored in a light map and then be que-
ried with a simple texture lookup while shading the view
sample. Even though a number of lossy compression schemes
have been suggested for this type of data (see, e.g., the works
of Rasmusson et al. [7] for a survey of hardware accelerated
light-map compression, or Lefebvre and Hoppe [8] for a well
performing hierarchical compression scheme), the memory
footprint can easily become unreasonable if high resolutions
are desired. These methods can also only support static
shadow receivers and require a unique UV-parameterization
for all objects. The memory requirements are even more
unsustainable ifmany lights are to be considered.

Therefore, it can be preferable to pre-compute and store a
representation of the shadow-casting geometry (e.g., a
shadow map) instead. For distant lights in a large open
scene, this can be as simple as rendering a large shadow
map for all static geometry and using that instead of real-
time methods for distant geometry (see e.g., the

presentation by Schultz [9]). Since this information will usu-
ally be very memory expensive, it is desirable to compress
it, if this can be done without introducing artifacts or too
expensive decoding. The methods suggested by Arvo and
Hirvikorpi [10] and by Sintorn et al. [4] both achieve high
compression rates while allowing for fast filtered shadow
lookups. This paper is an extended version of the paper by
K€ampe et al. [11].

Rendering with many lights. The problem of rendering
scenes with many light sources in real time has received
much attention lately, both by researchers and by the indus-
try. A common scenario in real-time applications is that
there are many (hundreds or thousands) of lights in the
scene, but each light has a bounded influence region. To
achieve real-time frame rates in such scenes, the lights must
be culled efficiently. Examples of such techniques include
Tiled Shading [12], Forward+ [13] and Clustered Shading [14].
These techniques do not explicitly take shadowing into
account, however. In a recent paper by Olsson et al. [15],
real-time shadows for hundreds of lights are shown to be
feasible by carefully rendering only those parts of the
shadow maps that are required and only at a resolution that
gives an approximate one-to-one mapping between view
samples and shadow-map samples. This latter restriction
means that the shadow-casting geometry might be gravely
undersampled, but the method shows promising results
and is currently the best candidate in a setting where all
geometry is dynamic. This method would be a good compli-
ment to our algorithm, to handle shadows cast from
dynamic objects, while avoiding the large workload of the
static shadow casters.

3 CONSTRUCTION

In this section, we will explain howwe build a partially com-
pressed DAG from a set of depth maps. We will quickly
review how SVO construction has been done in previous
work [4], explain how many of the identical nodes can be
culled in the insertion pass (Sections 3.1 and 3.2), discuss
approaches to finding regions where shadow information
can be considered undefined (Section 3.3), and finally,
explain our new approach to deciding how nodes intersect-
ing these regions can be resolved (as either completely shad-
owed or completely lit) for an improved memory footprint
(Section 3.4).

The CPVS stores binary visibility information for every
cell in a grid that is a discretization of the light’s Normalized

Fig. 1. The left image shows a scene lit by the sun with precomputed voxelized shadows of resolution 262;1443. Our novel algorithm generates this
shadow information in 32 seconds and compresses it to 48 MB (versus 100 MB for the previous CPVS method). To the right is the same scene lit by
165 spotlights with precomputed shadows, each with a resolution of 8;1923. The average build time for these CPVSs is 114 ms, and the average size
is 0.5 MB (versus 128 MB for a 16-bit shadow map). Evaluating shadows for all lights at 1,920 � 1,080 takes 3.2 ms.
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Device Coordinates (NDC). Storing the shadows as a dense
grid, or even an SVO, would consume a prohibitive amount
of memory at high resolutions. A DAG, on the other hand,
exploits the numerous similarities within this grid and
achieves much more efficient storage while maintaining fast
traversal of the data structure.

The DAG can be constructed top-down with visibility
information provided by a depth map of corresponding res-
olution [4]. During construction, a voxel at the finest resolu-
tion is classified as lit or shadowed by comparing its depth
against the depth map. To determine if a larger volume, for
higher levels, is fully lit or shadowed, the z-bounds of the
volume is tested against a min-max hierarchy of the depth
map. Starting with the root volume, each of its eight subvo-
lumes is constructed recursively. The recursion ends at the
finest resolution, or when reaching a fully lit or shadowed
subvolume. During construction, nodes are inserted in a
DAG, such that a node describes its homogeneous subvo-
lumes in a bit mask and each non-homogeneous subvolume
by a reference to another node.

When it is possible to determine that no shadow queries
will be made in a volume, e.g., because it is inside a closed
object, the shadow value of the volume can be chosen freely.
This allows formation of larger homogeneous regions,
which can decrease the memory consumption considerably.

After the top-down construction and insertion of nodes
into the DAG, identical nodes are merged to obtain the glob-
ally minimal number of nodes. This compression is the sub-
ject of Section 4.

3.1 Workload

Typically, large volumes of the scene will be homo-
geneously lit or shadowed and result in early termination
in the DAG. These regions require very little memory and
are fast to construct. At the boundaries between lit and
shadowed space, however, we want the accuracy of the
finest voxel resolution. The shadow boundaries will there-
fore dominate the memory consumption as well as the con-
struction time.

The shadow boundaries consist of the shadow-casting
surfaces themselves and the boundaries in mid air between
shadow casters (aligned with the light direction). Closed
objects enable a relaxation of the boundaries around the
shadow-casting surfaces (see the sparser voxel representa-
tion of the roof in Figs. 2b versus 2a) and allow early

termination of the DAG (and its construction), which saves
both memory and construction time.

We still need to resolve the shadow along the mid-air
boundaries to the finest resolution. Fortunately, a cross sec-
tion of a mid-air boundary is identical for all depths
between the shadow-casting surfaces (see Fig. 2), which
results in very few unique nodes in the final DAG.

With the mid-air boundaries not contributing to the
final node count, the final memory consumption scales as
if we voxelized only the shadow-casting surfaces. With the
closed object optimization, the final memory consumption
of the DAG instead scales as if we only voxelized the
silhouettes of the shadow-casting surfaces, i.e., as a one-
dimensional curve instead of a two-dimensional surface.
However, in the original algorithm, it is only the final
memory consumption that scales as the silhouettes. During
construction, the number of nodes to insert into the DAG
is still proportional to the number of non-unique voxels
needed to represent the two-dimensional mid-air bound-
ary. In the next section, we will explain how we cull identi-
cal nodes before they are inserted into the DAG, thereby
making the construction time proportional to the one-
dimensional silhouettes, as well.

3.2 Culling Construction of Identical Nodes

We start by requiring the recursive top-down construction
of the DAG to happen in Z-order, i.e., we complete process-
ing of volumes closer to the light before we continue to
those farther away. For each volume we process during con-
struction, we first determine if it is homogeneously lit or
shadowed by testing its bounds against the min-max depth
hierarchy. When the volume is non-homogeneous, we
would normally construct a new node (describing the vol-
ume) and insert it into the DAG. Before we construct a new
node, we first test if the non-homogeneous volume is identi-
cal to the adjacent volume closer to the light (which is
already represented in the DAG) (see Fig. 3). When they are
identical, we just use the same node reference as the adja-
cent volume and terminate the recursion. This culls both
construction and insertion of many nodes, just as homoge-
neous volumes do. When the volume is neither homoge-
neous nor identical to the adjacent volume, we need to
recursively construct a new node and insert it into the DAG.

Fig. 2. With the closed object optimization, the finest resolution is mainly
constructed along the mid-air shadow boundary, but the majority of
nodes along the boundary become identical.

Fig. 3. For each volume to be constructed (blue) that does not contain
shadow casting surfaces, we determine if we can reuse the representa-
tion of the volume closer to the light, thereby culling construction work.
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Two volumes, adjacent in Z-order, are identical when
neither of them contain shadow-casting surfaces. To test if a
volume is identical to the adjacent one, we compare the
maximum depth of the volume against the depth of the next
shadow-casting surface. During construction, we maintain
a hierarchy of depths to the next shadow-casting surface,
which we update for each completed node. Along with the
depth, we keep the reference to the node we will re-use (the
last completed node for each entry).

For each new node we construct, the depth of the next
shadow-casting surface is calculated by the recursive
construction. During the recursion, for homogeneous sub-
volumes, we obtain this depth from the min-max hierar-
chy, and at the finest level, we obtain this depth from the
depth map.

Size of DAG after insertion. As previously stated, our main
incentive for culling identical nodes during construction is
to increase performance of the algorithm. However, since
the key is to perform much of the compression in the inser-
tion step, we also greatly reduce the amount of working
memory required during construction. We have measured
the size of the DAG immediately after insertion as com-
pared to after the compression steps (see Section 6), and we
find that (in the tested scene), if we use the closed object
optimization, the compression step (described in Section 4)
reduces the DAG by approximately a factor of two. While
this is certainly worth the effort if memory footprint is of
highest importance, we can choose to output the DAG
immediately after insertion, skipping the compression step,
if build performance is more important. The data structure
is still several orders of magnitude smaller than the corre-
sponding shadow map.

3.3 Finding Undefined Regions

When the scene consists of closed objects, regions inside
closed geometry will never be queried and may, therefore,
hold an undefined value. This allows us to store a much less
detailed data structure, as described above (see Fig. 2). We
first establish, for each shadow-map texel, the enter-depth
(the depth at which a light ray first enters a shadow caster),
and the exit-depth (the depth at which the light ray first exits
the closed geometry, which may be composed by several
intersecting closed objects) and store the results in two
maps. How to generate these maps will be discussed in this
section. Nodes that intersect only one of these maps, or that
lie entirely between the enter and exit depths, are called
undefined and will be resolved as homogeneously lit or
shadowed, as described in the next section.

The enter-depth map is rendered as an ordinary shadow
map. Finding the exit depth is not as trivial, and requires us
to consider all fragments that fall within a pixel. In the
paper by Sintorn et al. [4], this is achieved by rendering
each layer of the geometry in front to back order (using
depth-peeling [16]), increasing a counter every time the
closest fragment is front facing and decreasing it when it is
back facing. Whenever the counter returns to zero, the
fragment’s depth is the exit depth.

Depth peeling has the drawback of requiring several ren-
der passes, which can be expensive for detailed geometry.
The problem is similar to that of Order Independent Transpar-
ency (OIT), and several papers exist that attempt to improve

performance by rendering the geometry in a single pass but
building a list of fragments per pixel (an A-Buffer) instead
(e.g., [17]). We have experimented with such solutions, but
in our experiments, the improved depth-peeling algorithm
explained below has had consistently better performance.
One reason for this is that an A-buffer approach will have to
store all fragments in a pixel, and then resolve the exit depth
in a second pass, whereas a depth-peeling algorithm will
process the layers in order and can stop rendering to a pixel
as soon as the exit depth is found.

Finding the exit depth. To find the exit depth, we start with
the enter depth as an input texture, and render front- and
back-facing triangles to two separate buffers, storing the
closest fragment that lies beyond the enter depth. We then
compare, for each pixel, the depth of the front- and back-fac-
ing fragment, and if the back-facing fragment’s depth is
closer, we have clearly found the exit depth. Otherwise, we
iteratively find the next front- and back-facing layers, using
the results from the previous pass as input textures, until
we have found the exit depth for all pixels. This algorithm
has two advantages. First, the counter of the number of
times we enter and exit a closed object becomes implicit.
Second, for the same number of processed triangles and
fragments, we advance two layers instead of one.

Assuming no self-intersections. We additionally note that if
we can assume that the input geometry has no self-intersec-
tions (and no objects are inside other objects), as well as
being closed, the exit depth can be found very easily by sim-
ply rendering the back-facing triangles with depth testing
enabled. Modeling all objects as not self-intersecting can be
very difficult, but most 3D modeling packages have tools
for creating boolean unions of closed objects automatically.

The same approach to finding the exit depth can be
used even without new restrictions to the input geometry.
If two objects do intersect, the exit depth will not be the
optimal depth, but it will always lie behind the enter
depth and in front of the true exit depth, so there will be
no artifacts in the visible shadows. Interestingly, we show
(in Section 6) that for our tested scenes, the final size of
the compressed data structure does not increase signifi-
cantly when using this simplistic algorithm. This is
because the vast majority of nodes of the DAG lies in the
bottom layers, and even with this less exact method, suffi-
ciently large undefined regions are found to remove most
nodes in these layers.

3.4 Resolving Undefined Regions

We exploit undefined regions to reduce the overall memory
consumption. As Sintorn et al. [4], we resolve undefined
regions to form homogeneous regions, wherever possible,
by making nodes containing lit and undefined regions fully
lit, and nodes containing shadowed and undefined regions
fully shadowed. When a node contains both lit and shad-
owed regions, it is not possible to form a homogeneous
region, and Sintorn et al. [4] resolve undefined regions to
shadowed, but admit that this heuristic might miss com-
pression opportunities.

We propose a new way of resolving undefined regions,
and we will show (in Section 6) that it has a significant posi-
tive impact on the final memory performance. This new
method locally minimizes the number of unique visibility
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masks between the near and the far plane of the light frus-
tum. It does not resolve the undefined regions in a globally
optimal way, but will locallyminimize the number of unique
nodes in any 8� 8 texel tile, and is very fast to execute.

Prior to constructing the DAG, we consider each 8� 8
texel tile of the depth map. In each tile, we have homo-
geneously lit slices from the near plane until the closest exit
depth, since no cell has to be shadowed in this depth range
(see Fig. 4). After the farthest enter depth, we will have homo-
geneously shadowed regions, since there will be no lit cells
after this depth. For depths between the fully lit and fully
shadowed regions, we need to store a minimal number of
visibility masks that describe the visibility transitions.

At the closest exit depth, the slice cannot be set to fully lit
and we need a visibility mask. We create a visibility mask
that has shadow in as many cells as possible by setting all
bits corresponding to cells that are beyond their correspond-
ing enter depth. This visibility mask can then be re-used for
all depths until the closest exit depth of the remaining cells.
At the end of this depth range, we need another transition
to a new visibility mask (with more shadowed cells). We
repeat this process of forming visibility masks until we
reach the fully shadowed region or the far plane.

We compute all visibility masks for each 8� 8 texel tile
upfront. For each visibility mask, we also keep the depth to
which the mask can be re-used. For non-closed geometry,
we use the enter depth also as the exit depth, but otherwise
follow the same procedure. Since each block is computed
separately, this can be performed in parallel on the GPU.
Besides reducing the computation times, this method also
reduces the amount of memory transferred to the host.

After this step, the DAG is constructed as described
above, except that we now never have to query the finest
level of the min-max depth hierarchy, and instead query the
visibility masks of the tile.

4 COMPRESSION

After inserting all nodes (with culling of identical nodes) as
described above, we have a partially reduced DAG that will
contain no redundant sub-trees describing the mid-air
boundaries between lit and shadowed space. The next step is
to reduce this DAG to an optimal DAG, which contains no
redundant sub-trees at all. In the next section, we will first
review how this is achieved in previous work ([4], [11], [18]),
and then, in Section 4.2, we will suggest an alternative algo-
rithm that achieves the same result muchmore efficiently.

When building large CPVS data structures, construction
must often be split into parts, as there is insufficient GPU

memory to hold the original shadow map and perhaps even
insufficient CPU memory to hold the intermediate partially
reduced DAGs. In such cases, a number of optimal sub-
DAGs will be created (one for each node at some level of
the hierarchy), and in a final step, these sub-DAGs will be
combined into one large optimal DAG. In Section 4.3, we
will describe a simple modification to the original algorithm
which improves the speed of this final step.

4.1 Recap of Bottom-Up Compression

In previous work, compressing an SVO (or a partially
reduced DAG) to an optimal DAG has been done with a
straightforward bottom-up algorithm, as illustrated in
Fig. 5. Starting at the leaf level (where nodes contain only a
bitmask representing 8 � 8 � 1 voxels), all nodes in this
level are sorted. In a sorted list, identical nodes are easily
identified as they lie at consecutive indices, and so all but

Fig. 4. At the finest level, we classify the cells as either lit, shadowed or undefined from the enter and exit-depth maps (two left-most figures). Our
method of resolving undefined regions results in fewer unique visibility masks (two right-most figures).

Fig. 5. The bottom-up compression algorithm used in previous work.
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one in a set of identical nodes can be removed, and the par-
ent nodes pointing to the removed nodes are updated to
point at the one remaining. The exact ordering used for sort-
ing is not important, and the leaf nodes are simply sorted by
treating the bitmask as an integer. Having processed the leaf
level, the next level can be processed similarly. The nodes
are sorted, this time using the child pointers as the sorting
key, and then redundant nodes are removed and parent
pointers are updated. The process is repeated for each level
to achieve an optimal DAG.

One problem with this algorithm is that the comparison
operator for internal nodes is potentially very expensive.
With eight child pointers, we may have to perform eight
integer comparisons to find out whether one node should
precede another. The same problem exists when deciding
whether two nodes are equal.

4.2 Top-Down Compression

Our initial approach to reducing the cost of comparing
internal nodes was to generate a hash value based on the
child pointers as soon as the level below had been proc-
essed. That way, identical nodes will have the same hash
value, and as the actual ordering of nodes is not important,
sorting can be done by simply comparing hash values.
However, if we instead generate the hash values for the
lowest internal node level, L, from the contents of the leaf
nodes (i.e., the bitmask), we can immediately identify iden-
tical nodes in that level. If we then generate the hash values
at level ðL� 1Þ from the hash values at level L, and so on,
we can immediately identify the roots of identical sub-trees
at any level without first compressing the lower levels. This
is illustrated in Fig. 6 for a binary tree.

Having calculated all hash values, which is quickly done
in a bottom up sweep over all nodes, we can now find the
optimal DAG using a top down algorithm. We first sort all
nodes in the level below the root node using the hash values
as key. Next, redundant nodes are removed and parent
pointers are updated. Finally, the next level is generated by
concatenating all child nodes of the remaining nodes, and
the process is repeated for that level. Thus, the main advan-
tage of the new method is that nodes in lower levels can be
found to be part of redundant sub-trees early on and will
not be processed at all. For instance, in Fig. 5, only half of
the leaf nodes would have to be sorted and compacted.

When using a simple comparison of hash values to deter-
mine if subgraphs are identical, it is important that no hash
collisions occur. A hash collision occurs if two root nodes of

non-identical subgraphs coincidentally obtain identical
hash values, and would lead to one of these subgraphs
being incorrectly replaced by the other. The effect would be
that, in the corresponding subvolume of the scene, the light-
visibility information would be a copy of a completely unre-
lated subvolume, which is, of course, unacceptable. How-
ever, we can assert that the probability of hazardous hash
collisions becomes negligible. Assuming 64-bit hash values
and that the hash function is ideal in its distribution of hash
values (which it of course is not in practice), the probability,
pn, of a hash collision in a level of n unique nodes is roughly
n2

264
. In our worst case (for 256K-res.), the total probability, P ,

of a hash collision is 0:0002. While we have observed no col-
lisions when using 64-bit hash values in our experiments,
the probability of a collision might be uncomfortably high
for even higher resolutions and more complex scenes. In
such cases, we recommend simply using a 96-bit hash value
which would reduce the probability of collision to about

10�13 in the above example.
This new algorithm can be very beneficial to perfor-

mance when we build large data structures and there is
much redundancy (as shown in Section 6). However, our
implementation is not quite as fast as the bottom-up
approach when there is little redundancy in the input
DAG, as it introduces the extra work of generating layer
L from the remaining nodes at level L� 1. For the same
reason, we have found that the new algorithm does not
improve performance for the final compression pass,
where several sub-DAGs are compressed into one large
DAG, and therefore we use the bottom-up approach for
this step. Note however, that the bottom-up approach can
make use of the generated hash values to improve perfor-
mance of sorting the nodes.

4.3 Merging Sub-DAGs

Having a sorting key (the hash value) that is identical for
roots of identical sub-trees, allows us to additionally sug-
gest a simple optimization to the final compression pass. In
previous work, merging sub-DAGs is done by concatenat-
ing all levels of all sub-DAGs and then processing them
bottom-up, in turn sorting each layer, removing redundant
nodes and updating the parent’s pointers. We note that
each layer in the input sub-DAGs is already sorted, as a
result of being compressed. Therefore, instead of re-sorting
the entire concatenated layers of the final DAG, we can sim-
ply merge the layers of two sub-DAGs in a single sweep
over the nodes.

To produce a final compressed DAG from N input sub-
DAGs, we process the layers one by one in a bottom up
order as before. At each layer, i, we first merge each pair of

sub-DAG layers, (ðLi;0; Li;1Þ; . . . ; ðLi;N�1; Li;NÞ) to produce N
2

intermediate sub-layers. We proceed recursively, merging
layers, pairwise, until the final layer is produced. After this
improved sorting step, we remove redundant nodes and
update parent pointers as before.

Apart from consistently outperforming the previous
algorithm, the new algorithm can be beneficial in that it
divides the final compression into smaller chunks of work.
This will allow for starting the final compression in a sepa-
rate thread as soon as two sub-DAGs have been generated,

Fig. 6. By calculating hashes, bottom up, from the contents of the child
nodes, nodes that are roots of identical sub-trees will have identical
hashes.
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which could hide much of the cost on multi-core hardware.
Perhaps more importantly, it allows for the work to be
divided over several frames in a realtime application,
which would facilitate, for instance, the updating of shad-
ows for a slowly moving lightsource (e.g., the sun) in the
background.

5 MANY LOCAL LIGHTS

We have explored the viability of using Compact Precom-
puted Voxelized Shadows in scenes containing many local,
bounded lights, rather than a single distant light. Specifi-
cally, we havemodified the CLOSEDCITY scene to contain hun-
dreds of spotlights with far attenuation and cut-off, to
evaluate whether such a scene can be efficiently lit using
CPVS, both in terms of memory and rendering performance.
The main differences from previous use cases, apart from
having to handle many lights efficiently, are that these lights
will have a perspective projection with a large field-of-view
and that the extreme resolutions used for distant lights are
not required, or even desirable, in this setting.

While Sintorn et al. [4] show that compression rates
increase significantly with increasing shadow resolution,
they still achieve compression rates of about 10�, for non-
closed geometry, and around 100� for closed geometry,
when the original shadow maps are as small as 4;096 �
4;096. With the added compression that our improved algo-
rithm obtains, and since they can now be built in a reason-
able time, it is possible to use precomputed, high-
resolution, CPVSs for hundreds of lights while staying well
within a reasonable memory budget. We will show (in
Section 6) that these data structures can then be efficiently
queried with large PCF filters to achieve high-quality shad-
ows in real-time framerates.

Many lights. In any performance-critical application
where many bounded lights are used, it is important to per-
form culling to avoid testing all lights against all pixels. We
have chosen to implement the Tiled Shading approach [12],
where a light is assigned to a list per screen-space tile, if the
light’s bounding volume intersects the tile’s (three-dimen-
sional) bounding volume. This approach can cull many
more lights, but to further improve culling before the actual
shadow-lookups are made, it would probably be beneficial
to employ the Clustered Shading approach [14]. The choice of
light-culling technique is orthogonal to our method.

When light culling has been performed, we simply start
one thread per pixel (in CUDA) and loop through the list of
assigned lights. Each entry in this list contains the light’s
model-view-projection matrix and a pointer to the appropri-
ate CPVS. The filtered visibility value is then calculated and
stored in a list for each pixel.

Perspective lights.Whenwe have few discrete depth values
in a CPVS (e.g., 4,096), we have to distribute them carefully.
With large field-of-view point lights, a plain discretization of
the lights NDC coordinates will result in poor depth preci-
sion close to the far plane. Our solution is similar to that of
Olsson et al. [14], but while their goal is to achieve as cubical
voxels as possible, our goal is to distribute N depth values
between the near and far plane to get a constant ratio
between a voxel’s height and depth. Therefore, we calculate
a voxel’s depth value, z, from the lights view space as:

z ¼ N
log zvs

near

log far
near

$ %
: (1)

Another issue with a high field-of-view is that the amount
of biasing required is highly dependent on where within the
frustum the view sample lies. As in the paper by Sintorn
et al. [4], we bias the lookup point by moving one half filter
width in the direction of the normal. In their implementation,
however, this distance was roughly estimated while render-
ing the G-Buffer, using derivatives of the light’s NDC coordi-
nates. This approach is not directly available to us, as we
must calculate a bias per light. Instead, the view sample’s
normal is sent along to the look-up kernel and transformed,
for each light, by the light’s model-view-projection matrix.
The biasing is then performed in integer coordinates after the
voxel coordinates have been calculated. This approach allow
us to use aminimal bias at any position in the frustum.

6 RESULTS

Unless stated otherwise, measurements were performed on
a desktop computer with an Intel Core i7 3,930K CPU,
32 GB DDR3 1,600 MHz RAM, and an NVIDIA GTX 980
GPU connected via PCI Express 2.0 x16.

6.1 Construction

The construction is partially done on the GPU and partially
on the CPU and consists of the following steps:

• Render maps: Render depth maps (OpenGL).
• Precompute: Compute the min-max hierarchy and

visibility masks (CUDA).
• Transfer: Transfer the min-max hierarchy and visibil-

ity masks to host (PCIe).
• Insert: Insert nodes into sub-DAGs (CPU).
• Compress subdags: Compress sub-DAGs (CPU).
• Compress final: Compress final DAG (CPU).

We render the enter-depth map and the exit-depth map in
OpenGL and use them to compute the visibility masks
(with corresponding re-use depth) and the min-max hier-
archy in CUDA. We only compute the min-max hierarchy
down to an entry per 8� 8 texel tile, as finer resolutions
are not needed after the construction of visibility masks.
The visibility masks and min-max hierarchy are then
transferred to the host, and we perform insertion of
nodes, compression of sub-DAGs and final compression
on the CPU. Since rendering depth maps of the full
resolution is infeasible, we perform construction for one
4K � 4K texel region at a time.

Overall construction performance. In Table 1, we show con-
struction times for a single large directional light in three
scenes. The scenes and lights are the same as those used in
the measurements by Sintorn et al. [4]. The NECROPOLIS scene
consists of non-closed geometry, while the other two are
entirely built from closed geometry (CLOSEDCITY and
FRACTALLANDSCAPE).

At moderate resolutions, construction times are fast
enough to be performed during, for instance, level-load in a
video-game. At higher resolutions, at least for closed geom-
etry, construction times are still fast enough that, for
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instance, a lighting artist could be expected to await their
completion after pressing a button.

Our construction times are more than two orders of mag-
nitude faster than those reported by Sintorn et al. [4] (see
Table 1), but they also state that the construction speed was
not their primary concern.

Culling insertion of identical nodes. In Table 2, we report the
timings when building the CLOSEDCITY scene, both as closed
and non-closed geometry and with and without taking
advantage of our improved culling algorithm. In these
experiments, for closed geometry, we use depth peeling to
find undefined regions (see Section 3.3), andwe only employ
our top-down compression (Section 4.2) andmerge-sort final
compression (Section 4.3) for non-closed geometry.

For non-closed geometry, we build the data structure
from a simple shadow map, and the construction time is
dominated by inserting nodes and compressing the DAG
on the CPU. When we employ culling of already con-
structed nodes, processing time is almost halved as we
insert much fewer nodes into the the intermediate DAG,
which also improves the speed of compression. For closed
geometry, the intermediate data structure does not have to
finely represent the shadow-casting surfaces but, unless we
employ culling, it still contains very many redundant nodes
that describe the transition from shadowed to visible
regions in open space. Therefore, construction time is much
faster than for non-closed geometry but is still dominated
by insertion and compression. When using closed geometry
and culling, the total work required for constructing the
DAG is small compared to the time taken to generate the
enter- and exit-depth maps.

Improved compression. Table 3 shows a break-down of the
timings for individual parts of our algorithm when con-
structing shadow information for the CLOSEDCITY scene. For
non-closed geometry, we also present the timings of our
top-down algorithm for compressing sub-DAGs and our
merge-sort variant of final compression.

The top-down algorithm requires a large amount of
redundancy to be present in the sub-DAG to outperform
the bottom-up approach, and so for closed geometry
(where only the silhouettes are finely described by unique
nodes), we actually observe very little or no gain in perfor-
mance with this algorithm. For non-closed geometry, how-
ever, we see a speed up ranging from �1:3 to �2:5. Since
sub-DAG compression is also the most expensive part of
our algorithm in this case, the total compression time is

almost halved when rendering high-resolution shadow
information.

At moderate resolutions, the merge-sort final compres-
sion algorithm also performs much better than the previous,
but in these experiments, the time taken for final compres-
sion is insignificant. Using the final merge-sort algorithm for
closed objects is also faster in itself but would require us to
generate hash values resulting in a net loss of performance.

6.2 Memory Consumption

We have measured the final memory consumption for the
two scenes of closed geometry, with and without the new
method of resolving undefined regions. The new method
compresses the final memory consumption of the CPVSs by
an additional 1.4–3.0� (see Table 4).

In Table 5, we show the resulting final DAG sizes if proc-
essing is stopped after the insertion step (as discussed in
Section 3.2), along with the shorter total construction times.

TABLE 1
Total CPVS Construction Times for Three Scenes

with and without ($ ) Detection of Undefined
Region Inside Closed Geometry

Resolution: 4K3 16K3 64K3 256K3

Necropolis $ 336 ms 4.75 s 25 s 312 s
ClosedCity $ 207 ms 3.02 s 40.7 s 579 s
ClosedCity 40 ms 328 ms 2.6 s 31.8 s
FractalL. $ 200 ms 2.9 s 42 s 589 s
FractalL. 26 ms 219 ms 2.5 s 36 s
Sintorn et al. [4] 2.0 s 18 s 256 s 5,520 s

Top-down compression and merge-sort final compression are used for non-
closed objects. The last row contains the construction times presented by
Sintorn et al. [4] for FractalLandscape.

TABLE 2
Construction Times for CLOSEDCITY (Our Implementation)
with and without Culling Construction of Identical Nodes

Resolution: 4K3 16K3 64K3 256K3

No Culling

not total 304 ms 4.1 s 61 s 918 s
closed DAG 293 ms 4 s 58.7 s 876 s

closed total 173 ms 2.1 s 32.1 s 503 s
DAG 140 ms 1.9 s 29 s 470 s

Culling

not total 207 ms 3.02 s 40.7 s 579 s
closed DAG 197 ms 2.8 s 38.6 s 543 s

closed total 40 ms 328 ms 2.6 s 31.8 s
DAG 17 ms 128 ms 665 ms 3.0 s

Timing is reported both for the total construction and the time for creating the
DAG (inserting and finding identical nodes). For non-closed objects we utilize
the top-down compression and the merge-sort final compression.

TABLE 3
Breakdown of Construction Timings for CLOSEDCITY

Resolution: 4K3 16K3 64K3 256K3

non-closed

render maps 2.1 ms 18.5 ms 273 ms 4.2 s
precompute 1.8 ms 29.2 ms 474 ms 7.41 s
transfer 5.6 ms 90.5 ms 1.4 s 23.4 s
insert 92.9 ms 1.36 s 20.6 s 325 s
compress subdags 142 ms 2.07 s 29.7 s 445 s
(w/ top-down opt.) 105 ms 1.30 s 15.1 s 182 s
compress final – 372 ms 3.88 s 36.5 s
(w/ merge-sort opt.) – 214 ms 2.88 s 35.9 s
Total 245 ms 3.95 s 56.4 s 842 s
(w/ opt.) 207 ms 3.02 s 40.8 s 579 s

closed

render maps 22.3 ms 170 ms 1.52 s 20.4 s
precompute 0.91 ms 14.9 ms 235 ms 3.73 s
transfer 1.2 ms 18.3 ms 280 ms 4.52 s
insert 8.79 _ms 48.8 ms 264 ms 1.24 s
compress subdags 7.34 _ms 44.1 _ms 217 _ms 934 _ms
compress final – 32.2 ms 173 ms 852 ms
Total 40.5 ms 328 ms 2.69 s 31.7 s
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We show this both for when the DAG is built with optimal
undefined regions and when no self-intersections is falsely
assumed (as described in Section 3.3). In our example scene,
using less than optimal undefined regions will not affect the
final DAG size significantly and the total processing time is
roughly halved. At a resolution of 16K3, additionally ignor-
ing the compression steps reduces the processing time to
61 percent, at the cost of a 62 percent larger final DAG. Note
that this is still only 1.1 percent of what the corresponding
shadow map would cost.

6.3 Rendering with Many Lights

In order to test the viability of using CPVSs in a scene with
many bounded lights, we have modified the CLOSEDCITY

scene (used for measurements by Sintorn et al. [4]) to con-
tain 165 spotlights, each of which lights a small portion of
the scene. For each spotlight, we built a CPVS at resolution

8;1923, which results in sufficiently sharp shadows for all
lights, with a 9� 9 PCF filter. All measurements in this sec-
tion were performed on a desktop computer with an Intel
Core i5 2,500K CPU, 16 GB DDR3 1,333 MHz RAM, and an
NVIDIA GTX Titan GPU connected via PCI Express 2.0 x16.
For these experiments, the exact depth-peeling algorithm
for finding undefined regions was used. Neither the
top-down compression, nor the merge-sort final compres-
sion algorithms were used.

Fig. 7 shows how the construction times and final data-
structure sizes are distributed over the different lights. The

sizes of the data structures vary between 0:3 and 1:7MB, for
a total of 96 MB. The build times are mostly dependent on
the depth complexity and the amount of geometry that inter-
sects the lights’ frustums. The total build time is 19 seconds.

Fig. 8 shows timings of different parts of the algorithm,
along with a curve showing the average number of lights
per pixel for each frame. The sequence was rendered at a
resolution of 1;920� 1;080. The first two steps are generat-
ing the bounding boxes for each 8� 8 screen space tile and
then intersecting the lights’ bounding volumes with these to
produce a light list per tile. This is done in two CUDA
passes and takes fairly constant time. The next step, calcu-
lating shadows, is highly dependent on how many lights
are overlapping the tiles in the current frame. The final step,
shading, is a full-screen fragment-shader pass, where each
pixel loops through the light list of the tile it resides in and
accumulates the contribution of each affecting light.

Each shadow lookup returns a filtered visibility using the
equivalent of a 9� 9 PCF filter. We replace the top six levels
of each CPVS with a small grid of pointers, which costs an
aditional 128 kB per light, for a small performance improve-
ment. At worst, the time for calculating shadows for all pix-
els is 9 ms.

7 CONCLUSION AND FUTURE WORK

We have presented an algorithm for generating Compact
Precomputed Voxelized Shadows, which improves the con-
struction speed of up to two orders of magnitude and
increases the compression by up to 3�. This makes con-
struction much more feasible to perform in runtime, e.g.,
during level load or amortized over several frames. We

TABLE 5
Final DAG Size and Build Time for ClosedCity When Stopping
After Insertion, Partial Compression or Final Compression
Steps, and with or without Full Depth-Peeling for Undefined

Region Identification

16K3(size/time) 64K3(size/time)

With depth peeling

insertion 6.3 MB 252 ms 30.4 MB 2.30 s
partial compress 4.4 MB 296 ms 19.5 MB 2.51 s
final compression 3.9 MB 328 ms 14.2 MB 2.69 s

Without depth peeling

insertion 6.5 MB 125 ms 31.4 MB 1.2 s
partial compress 4.5 MB 169 ms 20.1 MB 1.47 s
final compression 4.0 MB 202 ms 14.7 MB 1.64 s

TABLE 4
Resulting Memory Consumption with the Closed Object

Optimization, Comparing the New Method
with Sintorn et al. [2014]

ClosedCity FractalL.

Res. [MB] ratio [MB] ratio

new old new old

4K3 0.83 1.18 1.43 0.44 0.76 1.72
8K3 1.89 2.82 1.49 0.84 1.59 1.90
16K3 3.96 6.25 1.58 1.60 3.34 2.08
32K3 7.70 12.87 1.67 3.05 6.98 2.29
64K3 14.28 25.43 1.78 5.76 14.36 2.49
128K3 26.15 49.72 1.90 10.85 29.30 2.70
256K3 48.04 100.05 2.08 20.35 60.99 3.00

Fig. 7. Distribution of final data structure sizes and construction times for
the 165 CPVSs in CLOSEDCITY.

Fig. 8. The measured performance in a flythrough animation of the
CLOSEDCITY scene. The dashed line is the average number of lights that
are assigned to each tile in the frame.
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show that CPVSs for hundreds of spotlights, at a resolution

of 8K3, can be constructed at around 100 ms and 0.5 MB per
light. The memory consumption is about 100 times lower
than a corresponding shadow map. We also suggest a novel
transform from the light’s NDC into voxel space, to main-
tain high depth precision when the light’s frustum is not
near-orthographic.

We have presented a top-down compression algorithm
which was shown to be much more efficient in cases where
there is much redundancy left in the DAG after the insertion
step. This algorithm should also be very beneficial when
voxelizing surfaces [18].

We have shown that, for closed objects, at the cost of a
small increase in memory footprint, the performance cost of
identifying undefined regions can be significantly reduced.
Thus, a natural next step towards reducing construction
times further would be to move the insert and compression
passes to the GPU, which would also completely remove
the expensive PCI bus transfers.
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